Patient Engagement

Applying Behavioral Insights to Improve Health and Health Care

Article · October 12, 2016

Policymakers often try to achieve their goals by influencing citizen behavior. This is particularly true when it comes to health: in developed countries, most of the burden of disease arises from unhealthy eating, smoking, or alcohol consumption. However, the last 40 years have seen a growing body of evidence that challenges traditional policy approaches to influencing behavior. Decisions are often less deliberate and considered than has been assumed and more habitual, automatic, and influenced by the environment in which they are made. Policy approaches that neglect this evidence are less likely to be successful.

This idea was the impetus behind the creation of the Behavioural Insights Team (BIT) within the UK Government in 2010. The team was set up to apply findings from the behavioral sciences in order to improve policy and service design. After working in policy areas such as health, employment, and tax compliance, the team was spun out of government in 2014 to become a social purpose consulting company (still partly owned by government).

BIT uses a simple framework to apply behavioral science to policy: in order to encourage a behavior, make it Easy, Attractive, Social, and Timely (EAST). The sections below give some examples of how this framework can be applied to improve health and health care. Many of these initiatives were tested through low-cost randomized controlled trials; we believe that such trials could be used much more by health care providers and policymakers to improve their everyday activities.


The more effort that a behavior requires, the less likely someone will be to do it. This may seem obvious, but behavioral science research has shown that even small amounts of effort can have a disproportionately large effect on outcomes. For example, a UK law that made it slightly more difficult to buy painkillers in large quantities (and to release them from their packaging quickly) was found to have prevented around 800 suicides over 11 years. The slight increase in effort required was enough to save lives.

A study from Imperial College London, supported by BIT, applied the same principle to patient care. As part of the study, the investigators redesigned a hospital prescription chart to make clear communication easier. For example, rather than requiring doctors to write out milligrams (mg) and micrograms (mcg) by hand, the new chart allowed the user to circle one or the other. The idea was to “design out” errors. A trial showed that the chart improved the accuracy and completeness of prescribing. These examples represent the kinds of changes that can be easily scaled throughout health care systems.


Individuals are exposed to a vast amount of information every day. In response, they develop strategies for filtering out most of this information and focusing only on a few pieces. Therefore, information is only likely to influence behavior if it is delivered in a way that attracts attention effectively. We believe that there are many opportunities to improve the ways in which health systems try to attract the attention of their users.

For example, in the UK, 1 in 10 hospital appointments is missed. Sending cell phone text messages to remind patients about scheduled appointments does increase attendance, but there is little or no evidence about how the wording of these messages might affect no-shows. BIT ran a trial to test this idea in a real-life environment. We randomly allocated patients to receive several different reminder messages. We found that the best-performing message, which stated the cost of a missed appointment to the National Health Service, reduced no-shows by almost 25%. Moreover, it was the specific cost and wording that attracted attention: the same message expressed in general terms was less effective. Again, this is a simple change that is both cheap and scalable.


Individuals are strongly influenced by what they see others do or by what they are told others do in the same situation. Behaviors often spread through social networks rapidly and unpredictably, and people may not realize just how powerful the actions of others can be.

In a recent randomized trial, led by BIT and Public Health England, this idea was applied in an effort to reduce the use of antibiotics in primary care, a core goal of the UK’s Antimicrobial Resistance Strategy. One obvious way of achieving this goal would be to pay doctors to prescribe fewer antibiotics. But social norms may offer another option. As part of this trial, we used online prescribing data to identify the primary care practices that were prescribing antibiotics at a higher rate than other practices in the local area. We then sent half of those prescribers a letter, signed by England’s Chief Medical Officer, pointing out that “The great majority (80%) of practices in [local area] prescribe fewer antibiotics per head than yours.”

The study showed that the 800 practices that received the letter reduced their antibiotic prescribing rate by 3.3% (Figure 1), which amounted to an estimated 73,406 fewer doses of antibiotics being dispensed over 6 months and savings of £92,356 in direct prescription costs. We calculated that, if letters had been sent to all participants, England’s antibiotic prescribing rate would have been reduced by just under 1%. As a point of comparison, in the same year, the National Health Service spent £23m to incentivize general practitioners to achieve the same goal (a 1% reduction in their prescribing rate).

Impact of a Simple Social Norm Feedback Intervention on General Practitioner Prescribing Rates in the UK

This figure compares the antibiotic prescribing rates of doctors who received feedback that their rate was higher than that of their peers (“Treatment”) with the rates of doctors who did not receive such feedback (“Control”). In this randomized trial, prescribing rates were statistically indistinguishable before the feedback was received (September); however, the rates subsequently diverged, with the rate for the Treatment group being 3.3% lower than that for the Control group during the period presented. Click To Enlarge.


Timing is an often-neglected part of policy and service design. The likelihood that an individual will accept an offer can vary greatly depending on when it is offered. Certain moments can disrupt existing patterns of behavior and provide the opportunity for change. In one study, for example, the experience of having even minor surgery was shown to increase the likelihood of quitting smoking by nearly 30%, and receiving a short smoking cessation intervention at that time increased this effect even further.

Another effective way of influencing behavior is to provide timely feedback on an individual’s actions. BIT recently used this idea in an effort to reduce unnecessary visits to hospital emergency departments. We first identified people who had recently sought treatment in an emergency department when they could have gone elsewhere, as indicated by hospital statistics. We randomly allocated half of these people to receive a supportive letter that suggested alternative options for care (the other half received no letter). The letter was timely: it arrived within a week of the emergency department visit.

We then measured whether the people who had received the letter were more or less likely to return to the emergency department unnecessarily. In this instance, we saw no difference in the rates of unnecessary returns. It may be that there are systemic issues that make it too difficult to change this behavior at the individual level. Nevertheless, this result shows the value of testing, which allows us to identify options that are not effective and to focus our attention on areas that are most likely to bring improvement.

Looking Forward

These approaches offer the possibility of improving the quality and efficiency of care — at low cost — by focusing on drivers of behavior that health systems often neglect. Excitingly, their use appears to be growing, with many more interventions being tested in health care settings around the world. This process of testing will help us to understand what works best, where, and for whom. We argue that these EAST principles should be part of the basic approach for anyone working in health care policy and service design. They will be integral to achieving the changes in behavior that are necessary to make health systems sustainable in the future.

Have an Article Idea ­for NEJM Catalyst?


A weekly email newsletter featuring the latest actionable ideas and practical innovations from NEJM Catalyst.

Learn More »

More From Patient Engagement

Engaging Patients to Optimize Medication Adherence

Medication adherence is a significant public health challenge. As each patient is unique, it is critical for health care systems and providers to better characterize and meet individual patient needs at each stage along the way in order to improve medication adherence and ultimately improve patient well-being.

Shared Decision-Making for Good Clinical Care: Better, but Not Easier

Active patient involvement and patient autonomy can be burdensome to patients, especially when they are faced with serious illness. The primary goal of shared decision-making is not autonomy, but good care that fits patients’ lives.

The Patient as Consumer and the Measurement of Bedside Manner

Many physicians do not believe patient satisfaction is a legitimate pursuit. Yet they must meet consumers of health care where they are — on Internet ratings sites.

Health Care — A Final Frontier for Design

Design must move beyond narrow projects and encompass complex systems.

Halpern02_clip_still: A/B Testing Health Behavior Interventions

A/B Testing Health Behavior

Health care can’t implement changes overnight like Silicon Valley, but we can still learn from their version of treatment and control.

Social Interventions Can Lower Costs and Improve Outcomes

We can better serve our under-resourced patients by helping them access treatments and social interventions we already know to be effective.

Better Communication Makes Better Physicians

How Adrienne Boissy and Cleveland Clinic are focusing on physician communication — and getting results.

Why Real-World Results Are So Challenging for Digital Health

User engagement outside of clinical trials is the critical factor.

Transparency and Trust — Online Patient Reviews of Physicians

Transparency of validated data about delivery-system performance has the power to change the culture of health care.

Patient Engagement Survey: Technology Tools Gain Support — But Cost Is a Hurdle

NEJM Catalyst Insights Council members say patient engagement technology tools must be patient-centric and are most useful for managing chronic disease.


A weekly email newsletter featuring the latest actionable ideas and practical innovations from NEJM Catalyst.

Learn More »


Engaging Patients to Optimize Medication Adherence

Medication adherence is a significant public health challenge. As each patient is unique, it is…

Patient Incentives

43 Articles

A/B Testing Health Behavior

Health care can’t implement changes overnight like Silicon Valley, but we can still learn from…

Survey Snapshot: Genomic Data Is Far…

NEJM Catalyst Insights Council members say that clinical and cost data will continue to be…

Insights Council

Have a voice. Join other health care leaders effecting change, shaping tomorrow.

Apply Now